

- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - I. PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - . NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - I. PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

Inova Fairfax Hospital South Patient Tower Falls Church, VA

Penn State Senior Capstone Project Jianhong Qiu | Construction Management Advisor: James Faust

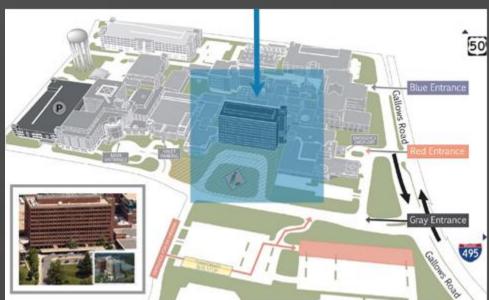
BREADTH TOPICS

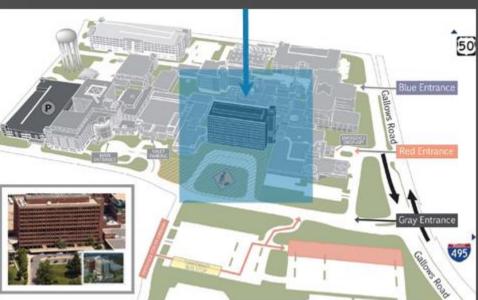
- DYNAMIC GLASS/ELETRICAL BREADTH
- MECHANICAL BREADTH

- II. ANALYSIS #1: IMPLEMENTATION OF BIM
 - I. PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - . PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - . **PROBLEM IDENTIFICATION**
 - II. NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - I. PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

FUNCTION: HEALTHCARE SIZE: 236,000 SQ. FT. 147.55 FT COST: 76MILLION \$

PROJECT OVERVIEW


LOCATION: 3300 GALLOWS ROAD, FALLS CHURCH, VA


- 174 PRIVATE ROOMS
- INTENSIVE CARE UNITS
- DATE OF CONSTRUCTION : JULY 2010-AUGUST 2012
- EDLIVERY METHOD: DESIGN-BID-BUILD

ORINIGAL SITE

- ANALYSIS #1: IMPLEMENTATION OF BIM
 - . **PROBLEM IDENTIFICATION**
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - . NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - . **PROBLEM IDENTIFICATION**
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

PROJECT PARTICIPANTS •MEP: RMF ENGINEERING, INC. •CIVIL: DEWBERRY & DAVIS LLC

PROJECT OVERVIEW

- •OWNER: INOVA HEALTHCARE SYSTEM
- •GERNAL CONTRACTOR: TURNER CONSTRUCION COMPANY
- •ARCHITECT: WILMOT SANZ, INC.
- •STRUCTURE: CAGLEY & ASSOCIATES
- •ELECTRICAL: TURLAND SERVICE CORPORATION

RMF Engineering Reliability. Efficiency. Integrity.

- **ANALYSIS #1: IMPLEMENTATION OF BIM**
 - PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

STRCTURE: CONCRETE STRUCTURE TWO-WAY FLAT SLAB TYPICAL 24IN. X 24IN. COLUMNS

MECHANICAL SYSTEM: 10,000CFM AND 13,000 CFM

ELECTRICAL SYSTEM: TWO 2,000KVA TRASFORMERS 2,000KW EMERGENCY GENERATOR

PROJECT OVERVIEW

- 12FLOORS ABOVE GRADE /1FLOOR BELOW GRADE
- 5^{TH} FLOOR WITH 4X 5,000 CFM AIR HANDLING UNITS
- 2 AIR HANDER FOR CAFETERIA AND KITCHEN ON WEST ROOF OF 2ND FLOOR
- 3 HEAT EXCHANGER IN BASEMENT (715 GALLONS/MINS)

FAÇADE: 22,000SF. THIN BRICK-CLAD) 282 METAL PANELS GLAZED INTO ALUINUM **CURTAIN WALL** SUSTAINABILITY: LEED SILVER CERTIFICATION GREEN ROOF, RAIN GARDEN

45,000 SF. ARCHITECTURAL PRECAST (INCLUDING

- **ANALYSIS #1: IMPLEMENTATION OF BIM**
 - PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - I. PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - I. PROBLEM IDENTIFICATION
 - II. NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - I. PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

•EXISTING BIM USES

- 3D COORDINATION OF MEP SYSTEM
- PREFIBRACATE MEP COMPONENTS

AYALYSIS #1 IMPLEMENTATION OF BIM

- Problem Identification:
- •BIM NOT STRICTLY REQUIRED BY OWNER
- •NOT USED TO FULL TENSION

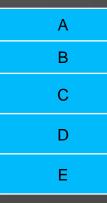
PROTENTIAL SOLUTIONS

•INVESTIGATION OF BIM TOOLS •BIM ROI •BIM SCORE CARD •EXPLORE ADDITIONAL BIM USAGE

- **PROJECT OVERVIEW**
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - PROBLEM IDENTIFICATION
 - II. BIM SCORECARD

III. BIM ROI

- IV. INVESTIGATION OF BIM TOOLS
- V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - I. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS



B: Monthly labor cost(\$) C: Training time (Months)

AYALYSIS #1 IMPLEMENTATION OF BIM

- BIM RETURN ON INVESTMENT (ROI) ROI= EARNING/COST
 - (B-(B/(1+E))) X (12-C) = 1st Year ROI $A+(B \times C \times D)$
- A: Cost of hardware and software(\$)
- D: **Productivity** lost during training(%)
- E: Productivity gain after training(%)

REVIT ARCHITECTURE SOFTWARE SURVEY

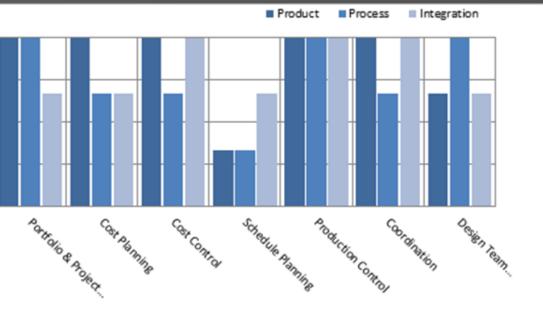
6000+ (4200 x 3 x 50%)

SCHEDULE COMPRESSION BY 10%

6000
4200
3
50
25

$(4200-(4200/(1+25\%))) \times (12-3) = 61.46\%$

- I. PROJECT OVERVIEW
- II. ANALYSIS #1: IMPLEMENTATION OF BIM
 - I. PROBLEM IDENTIFICATION


II. BIM SCORECARD

- III. BIM ROI
- IV. INVESTIGATION OF BIM TOOLS
- V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - I. PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - I. PROBLEM IDENTIFICATION
 - II. NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - I. PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

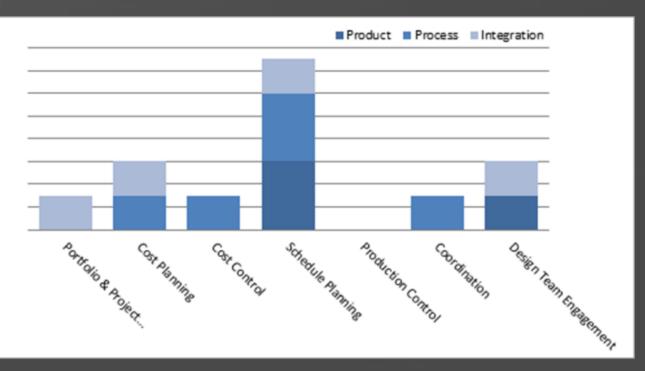
AYALYSIS #1 IMPLEMENTATION OF BIM

BIM SCORECARD-DETERMINE HOW MANY BIM CAPABILITIES ARE USED IN OPERATION 7 CATEGORIES: 1. PORTFOLIO AND PROJECT MANAGEMENT 2.COST PLANNING 3.COST CONTROL 4.SCHEDULE PLANNING 5. PRODUCTION CONTROL 6. DESIGN COORDINATION 7. DESIGN TEAM ENGAGEMENT

Category	Priority Level
Portfolio & Project Mgmt	3
Cost Planning	3
Cost Control	3
Schedule Planning	3
Production Control	3
Coordination	3
Design Team Engagement	3

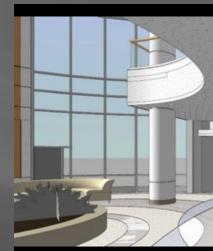
Scoring Standards:

0/blank = No Priority 1 = Low Priority (or consider blank) 2 = Medium Priority 3 = High Priority


- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - . PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

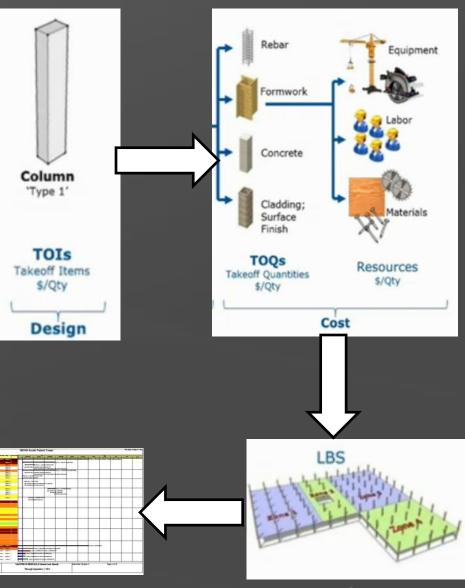
AYALYSIS #1 IMPLEMENTATION OF BIM

- BIM SCORECARD
- 1. PORTFOLIO AND PROJECT MANAGEMENT
- 2.COST PLANNING
- **3.COST CONTROL**
- 4.SCHEDULE PLANNING
- 5. PRODUCTION CONTROL
- 6. DESIGN COORDINATION
- 7. DESIGN TEAM ENGAGEMENT


REVIEW AREAS FOR IMPROVEMENT OPPORTUNITIES

- COST PLANNING
- SCHEDULE PLANNING
- DESIGN TEAM ENGAGEMENT

- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - . PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - . NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - . **PROBLEM IDENTIFICATION**
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS


INVESTIGATION OF BIM TOOLS VICO 5D MODEL SOFTWARE: •2D DRAWING •3D CONSTRUCTABILITY AND COORDINATION •4D SCHEDULING AND PRODUCTION CONTROL •5D ESTIMATION AND COST PLANNING

AYALYSIS #1 IMPLEMENTATION OF BIM

HOW DATA FLOW WORK

- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

CASE STUDY

•555,000 SF. PREFABRICATION

AYALYSIS #1 IMPLEMENTATION OF BIM

•MIDDLE TENNESSEE MEDICAL CENTER

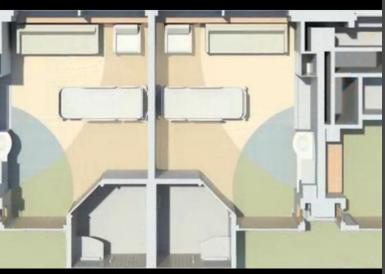
- •\$3MILLIONS BUDGET SAVING
- •ADDITIONAL \$1MILLION SAVING DUE TO BIM ENABLED
- •COMPLETED TWO MONTHS AHEAD OF SCHEDULE

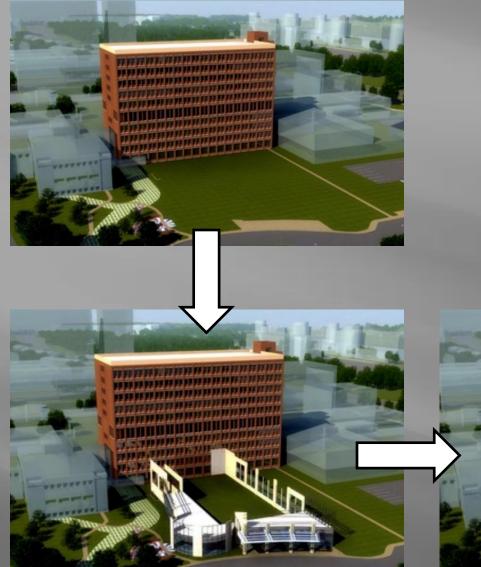
FURTHER BENEFITS •INOVA FAIRFAX 2015 CAMPUS IMPROVEMENT PLAN •EXPENSION OF 600,000SF. WOMEN HOSPITAL

- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - . PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - . PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

ANALYSIS #2 SHORT INTERVAL PRODUCTION SCHEDULE(SIPS)

- SIMILAR AND REPETITIVE FLOOR PLANS
- PATIENT ROOMS ALONG WITH WORKING SESSION
- IDENTIFY ROOM NUMBERS AND DIMENSIONS

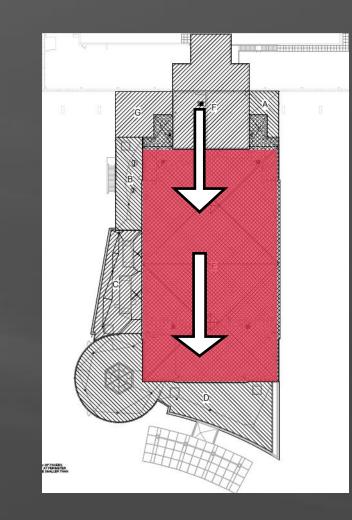

- POTENTIAL SOLUTION
- IDENTIFY AREAS FOR NEW SIPS SCHEDULE
- PREDESIGNED SMART ROOM
- CREATE NEW SCHEDULE

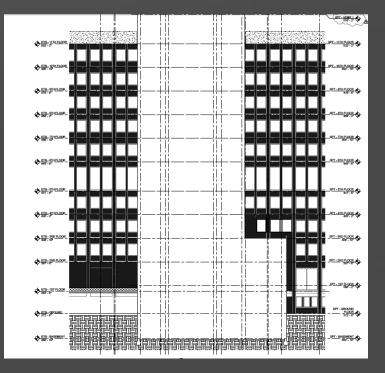

PROBLEM IDENTIFICATION

FLOOR PLAN

ANALYSIS#2 SHORT INTERVAL PRODUCTION SCHEDULE(SIPS)

ORIGINAL CONSTRUCION FLOW

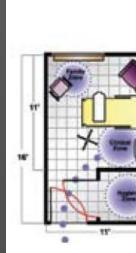


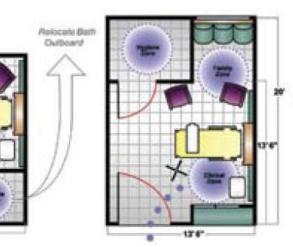

- **PROJECT OVERVIEW**
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - . **PROBLEM IDENTIFICATION**
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

ANALYSIS#2 SHORT INTERVAL PRODUCTION SCHEDULE(SIPS)

IDENTIFY
•RED ARE
•FLOW: FF
•3,4,6,7,8

- AREA FOR SIPS:
- ROM EAST TO SOUTH
- FLOOR MEDICAL/SURGERY ROOM
- •9-11FLOOR ICU BEDS




- **PROJECT OVERVIEW**
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - . PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

ANALYSIS #2 SHORT INTERVAL PRODUCTION SCHEDULE(SIPS)

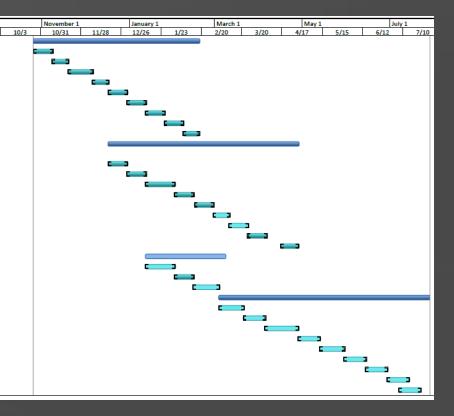
- SCHEDULE ACCERLATOIN-SMART ROOM
- •PREDESIGNED MEDICAL CARE/SURGERY ROOM BY HILL-ROM
- •FINALIZEINTERIOR ROOM LAYOUT
- •2D, 3D REDERINGS FOR CLIENTS

- **PROJECT OVERVIEW**
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - . **PROBLEM IDENTIFICATION**
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

ANALYSIS #2 SHORT INTERVAL PRODUCTION SCHEDULE(SIPS)

•SUPERSTRUCTURE

•ABOVE CEILING MEP


•FAÇADE

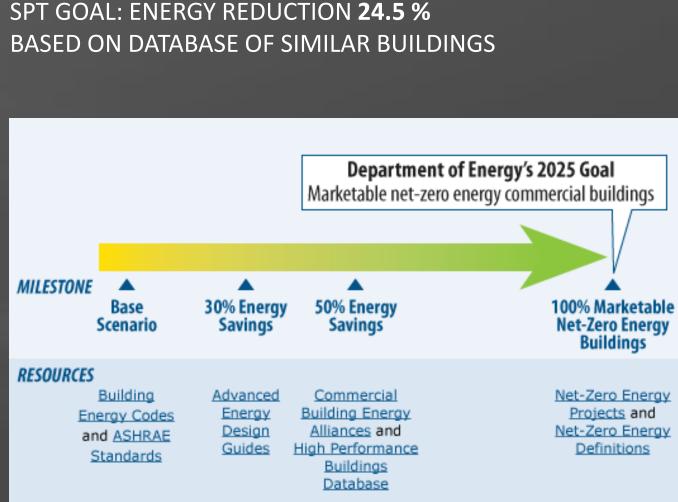
•INTERIOR

•SAVING ONE MONTH •AUGUST2011-JULY2011

SCHEDULE ACCELERATION

Task Name	Duration	Start	Finish	eptember 1	_
				9/5	Γ
Phase1 Supersturcture	84 days?	Tue 10/26/10	Fri 2/18/11		
3rd floor	10 days	Tue 10/26/10	Mon 11/8/10		
4th floor	10 days	Mon 11/8/10	Fri 11/19/10		
5th floor	12 days	Fri 11/19/10	Mon 12/6/10		
6th floor	10 days	Mon 12/6/10	Fri 12/17/10		
7th floor	10 days	Fri 12/17/10	Thu 12/30/10		
8th floor	10 days	Thu 12/30/10	Wed 1/12/11		
9th floor	10 days	Wed 1/12/11	Tue 1/25/11		
10th floor	10 days	Tue 1/25/11	Mon 2/7/11		
11th floor	10 days	Mon 2/7/11	Fri 2/18/11		
Phase2 Above Ceiling	95 days	Fri 12/17/10	Thu 4/28/11		
MEP					
3rd floor	10 days	Fri 12/17/10	Thu 12/30/10		
4th floor	10 days	Thu 12/30/10	Wed 1/12/11		
5th floor	15 days	Wed 1/12/11	Tue 2/1/11		
6th floor	10 days	Tue 2/1/11	Mon 2/14/11		
7th floor	10 days	Tue 2/15/11	Mon 2/28/11		
8th floor	10 days	Mon 2/28/11	Fri 3/11/11		
9th floor	10 days	Fri 3/11/11	Thu 3/24/11		
10th floor	10 days	Thu 3/24/11	Wed 4/6/11		
11th floor	10 days	Sat 4/16/11	Thu 4/28/11		
Phase3 facede	40 days?	Wed 1/12/11	Tue 3/8/11		
West façade	15 days	Wed 1/12/11	Tue 2/1/11		
South façade	10 days	Tue 2/1/11	Mon 2/14/11		
East Façade	15 days	Mon 2/14/11	Fri 3/4/11		
Phase4 Interior	105 days	Fri 3/4/11	Thu 7/28/11		
3rd floor	12 days	Fri 3/4/11	Mon 3/21/11		
4th floor	12 days	Mon 3/21/11	Tue 4/5/11		
5th floor	18 days	Tue 4/5/11	Thu 4/28/11		
6th floor	12 days	Thu 4/28/11	Fri 5/13/11		
7th floor	12 days	Fri 5/13/11	Mon 5/30/11		
8th floor	12 days	Mon 5/30/11	Tue 6/14/11		
9th floor	12 days	Tue 6/14/11	Wed 6/29/11		
10th floor	12 days	Wed 6/29/11	Thu 7/14/11		
11th floor	12 days	Thu 7/7/11	Fri 7/22/11		

- **PROJECT OVERVIEW**
- **ANALYSIS #1: IMPLEMENTATION OF BIM**
 - PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - I. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- **ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY**
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS


Analysis #3 NET ZERO ENERGY BUILDING SUSTAINABILITY

PROBLEM IDENTIFICATION •OPERATE 24/7 HIGH COOLING, ELECTRICITY HOT WATER DEMANDS •EMERGENCY BACKUP, OPERATIONAL DURING NATURAL AND OTHER

DISASTER

•TIGHT CONTROL OF TEMPERATURE, HUMIDITY, VENTILATION. VARY

AMONG DIFFERENT SPACE TYPES •DAY-TO-DAY OPERATION EQUIPMENT INTENSIVE, NO EFFICIENCY RATING SYSTEMS FOR MEDICAL EQUIPMENTS

- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

•ATTRACTIVE AND INSPIRING

Analysis #3 NET ZERO ENERGY BUILDING SUSTAINABILITY

- NET ZERO ENERGY BUILDING CERTIFICATION REQUIREMENT: •CONSTRUCTION AND RENEWABLE ENERGY SYSTEM CURB THE PROJECT'S
- CONTRIBUTION TO THE EFFECTS OF SPRAWLED DEVELOPMENT
- •THE BUILDING OPERATES AT NET ZERO ENERGY
- •NOT PRECLUDE ANOTHER BUILDING

- NET ZERO SITE ENERGY
- NET ZERO SOURCE ENERGY
- NET ZERO ENERGY COSTS
- NET ZERO ENERGY EMISSIONS

NATIONAL RENEWABLE ENERGY LABORATORY(NREL) DEFINITION SUGGESTED BELOW TO DEFINE NET ZERO ENERGY:

- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - I. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

- CHILLED BEAM
 - > PASSIVE/ACTIVE/MULTI-SERVICE
- COMBINED HEAT AND POWER(CHP)
- SOLAR ELECTRIC
 - ROOF/GROUND/MOUNTED FACING SOUTH
 - > NO SHADE 9:00AM-3:000M DECEMBER

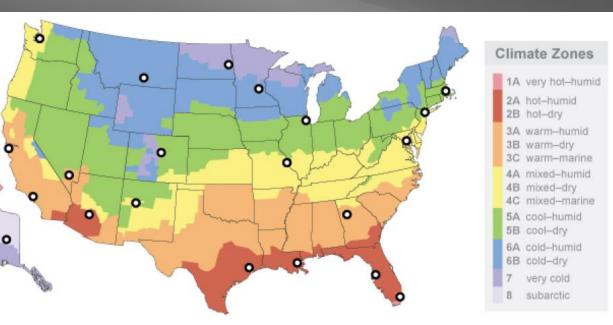
Analysis #3 NET ZERO ENERGY BUILDING SUSTAINABILITY

- TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL

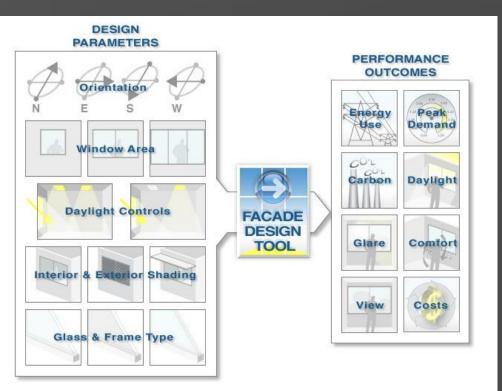
➢ 2-4% NET COST

UTILITY BILL: **PRODUCED VS. USED**

EXTRA ENERGY: SELL BACK TO UTILITY COMPANIES FIXED PRICE


ADD UP MONTYLY READINGS OF ONE YEAR

- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS


Analysis #3 NET ZERO ENERGY BUILDING SUSTAINABILITY

BREADTH TOPIC: DYNAMIC GLASS

THE FAÇADE DESIGN TOOL 4A MIXED HUMID CLIMATE

DESIGN PARAMETERS: WINDOW AREA/DAYLIGHTS CONTROLS / SHADING/GLASS&FRAME TYPE

- I. PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM .
 - I. PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - I. PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - I. PROBLEM IDENTIFICATION
 - II. NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - I. PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

BREADTH TOPIC: DYNAMIC GLASS

		ort	omf	C		Energy Peak Carbon Daylight Glare						Energy Peak Carbon				
		erfor	P		de	Light & Sha				System	Glazing S			he Building		
Glare cor	Daving	carbon	Peak	Energ	Shades	Lighting Controls	л	HGC	or S	1	Features	anes	Glass	Building Projections	wwR	
•					None	Continuous	52	.29 0		derate SHGC, argon	-E tint, moderate VT, mod	2	E	2' Overhang	30	
•					None	Continuous	52	.29 0		derate SHGC, argon	-E tint, moderate VT, mod	2	Е	None	30	
•					IntVB	Continuous	.52	.29 0		derate SHGC, argon	-E tint, moderate VT, mod	2	E	2' Overhang	30	
•		•			None	Continuous	.48	0.5 0		derate SHGC	Tint, moderate VT, mod	2	С	2' Overhang	30	
			۲		IntVB	None	.52	.29 0		derate SHGC, argon	-E tint, moderate VT, mod	2	E	2' Overhang	30	
•	0				None	None	52	.29 0		derate SHGC, argon	-E tint, moderate VT, mod	2	Ε	2' Overhang	30	
•					IntVB	Continuous	.52	.29 0		derate SHGC, argon	-E tint, moderate VT, mod	2	E	None	30	
•					None	Continuous	48	0.5 0	1000	derate SHGC	Tint, moderate VT, mod	2	С	None	30	
•					IntVB	Continuous	.48	0.5 0		derate SHGC	Tint, moderate VT, mod	2	С	2' Overhang	30	
•					IntVB	None	52	.29 0		derate SHGC, argon	-E tint, moderate VT, mod	2	Ε	None	30	
•				-	None	None	.52	.29 0	1	derate SHGC, argon	-E tint, moderate VT, mod	2	E	None	30	
•					IntVB	None	.48	0.5 0		derate SHGC	Tint, moderate VT, mod	2	С	2' Overhang	30	
•					IntVB	Continuous	48	0.5 0		derate SHGC	Tint, moderate VT, mod	2	С	None	30	
•					None	None	48	0.5 0		derate SHGC	Tint, moderate VT, mod	2	С	2' Overhang	30	
•				-	IntVB	None	48	0.5 0		derate SHGC	Tint, moderate VT, mod	2	С	None	30	
•			-		None	None	.48	0.5 0		derate SHGC	Tint, moderate VT, mod	2	С	None	30	
est	0	•	worst	1												

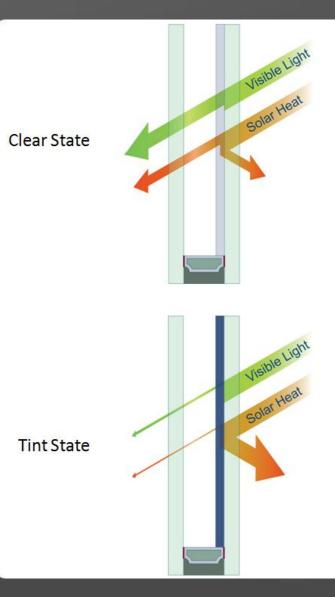
Total Matching Records: 16

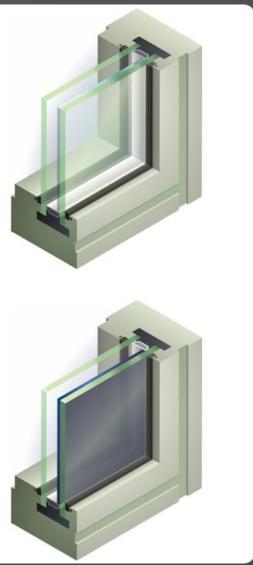
Su	mmary		Energy Peak Carbon				Energy Peak Carbon Daylight				Glare	С	omfo	ort			
The	Building				System				Light & Sha	de		P	erfor	man	се		
wwR	Building Projections	Glass	Panes		Features		U-factor	SHGC	νт	Lighting Controls	Shades	Energ	Peak	carbon	OBNIG	alare c	omfo
30	2' Overhang	Н	2	L	owe-E, high VT, low S	SHGC, argon	0.24	0.27	0.64	None	None	•	•	-	•	•	•
30	2' Overhang	Е	2	Low-E ti	nt, moderate VT, mod	lerate SHGC, argon	0.24	0.29	0.52	None	None	•	•	-	•		(
30	2' Overhang	С	2	Ti	nt, moderate VT, mod	derate SHGC	0.47	0.5	0.48	None	None	•	•	•	•	•	
30	2' Overhang	1	3	Low	-E, high VT, moderat	e SHGC, argon	0.13	0.32	0.6	None	None	•	•	•	•		(
30	2' Overhang	G	2	Low	-E, high VT, moderat	e SHGC, argon	0.24	0.38	0.7	None	None	•	•	•	•	•	(
													e worst			bes	đ

SOUTH FACADE

Su	Summary		Energ	у	Peak Carbon			Daylig	ht	Glare		С	omf	ort			
The	Building		Glazing System							Light & Sha	de		P	erfor	man	се	
WWR	Building Projections	Glass	Panes		Features		U-factor	SHGC	νт	Lighting Controls	Shades	Ener	Peak	carbon	0avii9	Glare	omfort
30	None	D	2		Reflective, low VT, l	ow SHGC	0.44	0.18	0.1	None	None	-		•		•	-
30	None	J	3		Low-E, low VT, low St	HGC, argon	0.12	0.21	0.34	None	None						•
30	None	F	2		Low-E, low VT, low St	HGC, argon	0.25	0.24	0.37	None	None			•	•		•
30	None	Е	2	Low-E	tint, moderate VT, mod	erate SHGC, argon	0.24	0.29	0.52	None	None		•	•	•		-
30	None	С	2		Tint, moderate VT, mod	lerate SHGC	0.47	0.5	0.48	None	None		-	•	•	•	•
													e worst	•		bes) st

EAST FACADE




- **PROJECT OVERVIEW**
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - I. PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - . **PROBLEM IDENTIFICATION**
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - I. NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - I. PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

DYNAMIC GLASS •REDUCE VISUAL GLARE •REDUCING COOLING HEATING USAGE BY 20% •REDUCING PEAK LOAD BY 30% •COST:20\$ / SF.

Analysis #3 NET ZERO ENERGY BUILDING SUSTAINABILITY

BREADTH TOPIC: DYNAMIC GLASS

- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - . PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - . NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

BREADTH TOPIC: DYNAMIC GLASS

TOTAL ENERGY SAVING= 31,789,200kBTU x 25%= **7,947,300kBTU**

TOTAL COST SAVINGS=7.9473 x 1000 x 35.16= **\$ 279,427**

SOLADIGM INC. \$20 /SF

TOTAL COST= \$20/ ft2 x 22450 ft2 = **\$449,000**

(thousa	nd Btu per square foot)				
	ECC Climate Zone	Heating	Cooling	Water Heating	Ventilation
Miami	1A	40.6	67.5	1.8	17.4
Houston	2A	47.2	68.1	2.1	17.1
Phoenix	2B	42.5	62.3	1.9	17.4
Atlanta	3A	48.6	62.5	2.5	16.4
Los Angeles	3B	47.6	55.5	2.4	15.7
Las Vegas	3B	41.8	52.0	2.2	16.2
San Francisco	3C	56.6	51.5	2.7	16.1
Baltimore	4A	55.4	60.5	2.7	16.1
Albuquerque	4B	37.9	41.7	2.7	15.5
Seattle	4C	55.1	49.7	2.9	15.2
Chicago	5A	58.2	51.0	3.0	15.6
Boulder	5B	42.3	39.3	3.0	15.1
Minneapolis	6A	62.8	45.5	3.2	15.1
Helena	6B	50.8	36.6	3.2	14.7
Duluth	7	67.0	38.5	3.5	14.7
Fairbanks	8	89.1	25.2	3.9	13.5
Climate Z benchma	al building energy benchm ones. They are designed to rk building had 241,263 squ tt energy consumption = 15.	provide a consistent ba are feet and 5 floors. B	aseline to compare build enchmark interior lightir	ding performance in energ ig energy = 16.36 thousan	y-use simulations. The Id Btu/SF. Interior
3.8 : Hospitals a	and Medical Facilities		ootage, Delivered En	ergy, Energy Intensity	/, Selected Years
			-		
	Iotal	Square Footage	Energ	ly Use	Energy Intensity

1999	
2003	
2008	
2010	
2015	
2020	
2025	
2030	
2035	

3.8.4 Energy Benchmarks for Newly Constructed Hospitals, by Selected City and End-Use (thousand Btu per square foot)

Total Square Footage	Energy Use	Energy Intensity
(billion)	(quadrillion Btus)	(thousand Btus/SF)
1.87	0.43	229.0
1.91	0.48	249.3
2.15	0.45	210.1
2.24	0.48	213.7
2.45	0.51	208.2
2.66	0.54	202.9
2.88	0.56	194.8
3.09	0.59	190.9
3.30	0.61	184.6

- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - . PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

PROBLEM IDENTIFICATION

- COMPLEXITY OF MEP SYSTEM:
- MORE THAN ONE YEAR BIM COORDINATION
- NO EARLIER CONTRIBUTION TO DESIGN PHASE AND COORDINATION PROCESS

EAST ELEVATION EXTERIOR WALL: •LIGHT GAGE METAL FRAIMING •REDESIGN TO COORDINATE **BETTER WITH WOMEN'S HOSPITAL** •REVISED ENGINEERING DRAWINGS PREPARED BY FRAMING SUBCONTRACTOR.

- I. PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - I. PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - . PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - . NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - I. PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

SOUTH ELEVATION :

CURVES NOT MATCH

SCHEDULE DELAYED

PROBLEM IDENTIFICATION

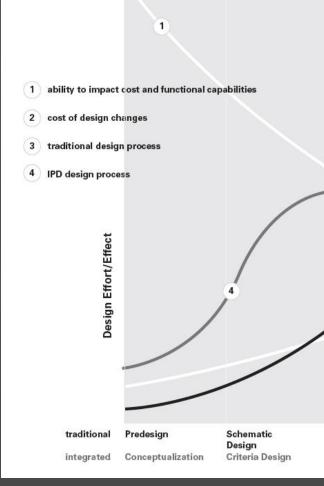
- 1ST AND 2ND FLOOR CURVED WALL
- ARCHITECTURE AND ENGINEERING DRAWING MISTAKES

- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

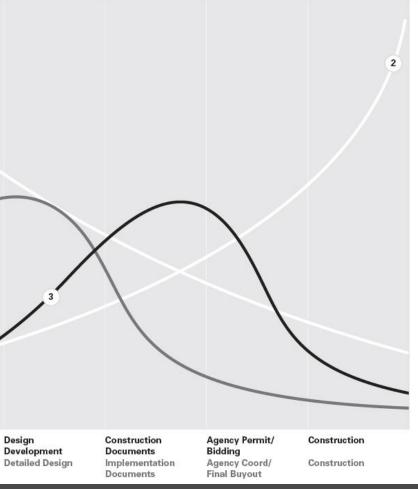
STUDY ON INTEGRATED PROJECT DELIVERY A Guide(AIA)

Comp

ward


Risk

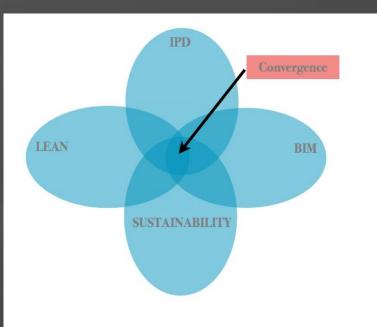
Proces


Comn

tems	Traditional Project Delivery	Integrated Project Delivery
	Fragmented, "minimum- necessary" basis, strongly hierarchical	Mutual Respect and Trust
ensation/re	Individually pursued	Mutual Benefit and Reward
	Individually managed, transferred to the greatest extent possible	Collaborative Innovation and Decision
S	linear, segregated,information hoarded.	Early Involvement of Key Participants, goal Definition, Intensified Planning
unication	Paper based,2 dimensional	Digital based, BIM, Open Communication

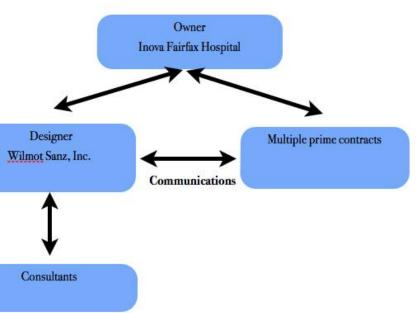
- ABILITY TO CHANGE DECREASE
- COST OF CHANGES INCREASE
- IPD PUT MORE EFFORT IN

PREDESIGN/SCHEMATIC DESIGN PHASE


I. PROJECT OVERVIEW	I.	PROJECT OVERVIEW
---------------------	----	-------------------------

- ANALYSIS #1: IMPLEMENTATION OF BIM
 - PROBLEM IDENTIFICATION
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - . **PROBLEM IDENTIFICATION**
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

- •TRYING SOMETHING NEW AND UNTESTED
- •BUILDING WITHOUT A GMP
- •OWNER TAKING RISKS BACK
- •DIFFICULT TO MEASURE THE BENEFIT


RISKS:

MOST IDEAL WAY TO ACHIEVE IPD COMBINE ALL NEW TECHNOLOGIES BIM LEAN SUSTAINABILITY

- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - . **PROBLEM IDENTIFICATION**
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

MULTI PRIME CONTRACTS

DIVISION OF CAPITAL ASSET MANAGEMENT OF COMMONWEALTH OF MASSACHUSETTS

- FREQUENT MEETINGS
- INFORMATION
- MANAGEMENT
- DRIVING IPD ADOPTION

• SHARING SENSITIVE, PROPRIETARY OR CONFIDENTIAL

 SELECT AND BUILD STRONG IPD PROJECT TEAMS MASTER KEY COMPONENTS OF CONTRACTS AND RISK

UNDERSTAND ECONOMIC AND MARKET FACTORS THAT ARE

- PROJECT OVERVIEW
- ANALYSIS #1: IMPLEMENTATION OF BIM
 - . **PROBLEM IDENTIFICATION**
 - II. BIM SCORECARD
 - III. BIM ROI
 - IV. INVESTIGATION OF BIM TOOLS
 - V. CASE STUDY AND FEASIBILITY
- III. ANALYSIS #2: SHORT INTERVAL PRODUCTION SCHEDULES(SIPS)
 - PROBLEM IDENTIFICATION
 - II. IDENTIFY AREA FOR SIPS
 - III. SMART ROOM
 - IV. SCHEDULE ACCELERATION
- IV. ANALYSIS #3: NET ZERO ENERGY BUILDING SUSTAINABILITY
 - PROBLEM IDENTIFICATION
 - NZE BUILDING CERTIFICATION
 - III. TOP STRATEGIES FOR ENERGY EFFICIENT HOSPITAL
 - IV. ELECTRICALBREADTH DYNAMIC GLASS
- V. ANALYSIS #4: INTEGRATED PROJECT DELIVERY (IPD)
 - PROBLEM IDENTIFICATION
 - II. STUDY ON IPD GUIDE
 - III. MULTI PRIME CONTRACTS
- VI. SUMMARY AND CONCLUSION
- VII. ACKNOWLEDGEMENTS

ANALYSIS#1INCREASE IMPLEMENTATION OF BIM SCHEDULE/COST PLANNING ANALYSIS#2 SIPS ACCELERATE SCHEDULE

SUMMARY AND CONCLUSION

PREDESIGNED SMART ROOM

PRODUCTIVITY

ANALYSIS#3 NET ZERO ENERGY INCREASE BUILDING ENERGY EFFICIENCY ANALYSIS#4 INTEGREATED PROJECT DELIVERY ELIMINATE BARRIERS INCREASE

PENN<u>State</u> **.** Department of Architectural Engineering

ACKNOWLEGEMENTS

PENN STATE AE FACULTY ADVISOR: JAMES FAUST CRAIG DUBLER

TURNER CONSTRUCTION: TESSA R. TEODORO JOHNNY F. WEAVER DREW KELLEHER

VICO SOFTWARE INTEGRATING CONSTRUCTION: HOLLY ALLISON

PACE INDUSTRY MEMBERS

MY FAMILY AND FRIENDS